基于互补滤波器和惯性SLAM算法的ROV姿态估计

  • 基于互补滤波器和惯性SLAM算法的ROV姿态估计已关闭评论
  • 85 views
  • A+
所属分类:AGV设计资料
摘要

姿态估计具有广泛的应用,如空中,水下,机器人,导航系统,游戏,工业,增强现实系统等。目前,在该领域的深入研究已经产生了许多完善的估计方法,其中复杂的如卡尔曼滤波,简单的如互补滤波器。一般而言,传统的姿态或角度估计滤波器的计算复杂度较高。为此,研究令人满意的、精确的、计算复杂度低的算法是本文的初衷。因此,为了针对某些应用,给出鲁棒性强、简单、高效的方法,互补滤波器(CF)得到了长足的发展。首先,互补滤波器的最新应用是基于固定增益互补算法(FGCF)和渐变下降的互补算法(GDCF),该方法被用于基于微机电系统(MEMS)的惯性测量单元(IMU)中。这些固定增益估计器分别使用陀螺仪和加速度计进行高低频姿态估计。结合不同的实际应用,通过MPU6050 IMU的仿真和实验验证了GDCF和FGCF的性能。由于在没有辅助传感的情况下使用IMU,两个滤波器的性能仅限于欧拉距离和侧倾角度的姿态估计。两者的估计结果相近,但是,FGCF比GDCF略有优势,其一是具有更高的精度,其二是该方法的两个可调增益能够提供额外的选择。此外,相比于GDCF,FGCF滤波器增益的波动较小。两种算法的计算复杂度几乎相同。其次,本文分别使用FGCF和GDCF算法,以及扩展卡尔曼滤波法,进行MEMS IMU的姿态估计,并比较了估计的结果。基于MPU6050 IMU的仿真和实验数据,使用欧拉角度估计,对估计器的性能进行了评估,评估的依据是均方根误差(RMSE)。此外,通过调整参数进行算法寻优。结果表明,在不考虑计算负荷的前提下,卡尔曼滤波及其变体算法是解决位置和姿态估计问题的标准方法,FGCF和GDCF是解决此问题下的有效方法。结果评估中,EKF的效果最佳,但与CF相比,计算时间更长。与GDCF相比,FGCF有一点优势,部分原因在于FGCF的可调增益能提供更多的选择。再次,FGCF、变增益互补滤波器(VGCF)和扩展卡尔曼滤波器(EKF)是许多应用的有效解决方法,它们具有固定增益,计算复杂度分别为简单、中等和复杂。MEMS IMU互补滤波器的精度,可以在少量计算的前提下,通过改变/切换滤波器增益的方法得到提高。这两种方法都可以有效地用于辅助INS系统,其中寻求较小计算负荷的算法是该应用的主要研究方向。用于姿态估计的GDCF具有固定的增益,其数值不会随系统的动态条件发生改变,这种情况会导致估计的错误。而复杂的算法由于具有较高的计算复杂度,不适用于大多数应用对系统资源的限定。我们提出了模糊优化互补滤波(FTCF)算法来消除误差,并保证最小的计算负荷。所提出的算法与卡尔曼滤波算法进行了比较与评估。结果证明,与GDCF相比,FTCF大大减少了姿态估计的误差。验证了每个动态条件下滤波器增益的调整都在减小姿态估计误差方面发挥了作用。此外,FTCF具有很小的计算成本,但其性能优于GDCF,与复杂的卡尔曼滤波相近。最后,本文基于所提出的惯性SLAM算法,使用IMU的输出数据和声纳观察到的特征来估计潜水器的速度和姿态,估计过程不使用其它诸如GPS等定位系统。惯性SLAM算法是INS和SLAM算法的组合。与EKF-SLAM相比,惯性SLAM的时间复杂度更低。所采用的粒子滤波器仅需使用较少的粒子数就可以达到EKF-SLAM的精度,并具有更快的计算速度。

目 录
Abstract
摘 要
List of Abbreviations

第 1 章 绪论

1.1 课题背景及研究的目的和意义
1.2 国内外研究现状
1.2.1 声纳的类型和工作原理
1.2.2 声纳的应用
1.2.3 拖曳式阵列声纳
1.3 遥控潜水器
1.3.1 ROV 发展历史
1.3.2 ROV 的分类
1.4 拖曳阵列
1.5 问题陈述
1.5.1 ROV 姿态估计
1.5.2 拖曳阵列方向/形状估计
1.6 问题阐述
1.7 本文研究目的和目标
1.8 论文的主要结构

第 2 章 传感器融合算法和四元数

2.1 引言
2.2 互补滤波器
2.2.1 固定增益互补滤波器
2.2.2 梯度下降的互补滤波器
2.2.3 可变增益互补滤波器
2.3 卡尔曼滤波器
2.3.1 离散卡尔曼滤波器
2.3.2 扩展卡尔曼滤波器
2.4 四元数
2.4.1 欧拉角与四元数
2.4.2 基于四元数的卡尔曼滤波器

第 3 章 基于传感器融合的 MEMS IMU 互补和姿态估计算法

3.1 引言
3.2 MEMS IMU 陀螺仪模型
3.3 MEMS IMU 加速度计模型
3.4 姿态估计算法
3.4.1 扩展卡尔曼滤波器
3.4.2 固定增益互补滤波器
3.4.2 梯度下降互补滤波器
3.5 结果与讨论
3.5.1 仿真结果
3.5.2 实验结果
3.6 本章小结 54

第 4 章 基于增益补充滤波器的姿态估计

4.1 引言
4.2 互补滤波器和 MEMS IMU 建模
4.2.1 扩展卡尔曼滤波器
4.2.2 互补滤波器
4.2.3 陀螺仪姿态估计
4.2.4 加速度计姿态估计
4.3 姿态估计算法
4.3.1 固定增益互补滤波器
4.3.2 修改增益互补滤波器
4.3.3 基于扩展卡尔曼滤波器的姿态估计
4.4 结果与讨论
4.4.1 仿真结果
4.4.2 实验结果
4.5 本章小结

第 5 章 基于模糊调整互补滤波器的 MEMS IMU 的姿态估计

5.1 引言
5.2 理论背景
5.2.1 理论背景
5.2.2 系统校准
5.3 提出的算法
5.3.1 梯度下降互补滤波器
5.3.2 模糊调谐互补滤波器
5.4 仿真结果
5.5 本章小结

第 6 章 基于惯性测量元件和声呐的自动潜水器导航技术

6.1 引言
6.2 导航方法
6.2.1 惯性导航
6.2.2 声学导航
6.2.3 地理导航
6.3 传感器误差
6.4 自动潜水器的惯性 SLAM 算法
6.4.1 状态矢量及分解
6.4.2 潜水器模型
6.4.3 惯性 SLAM 滤波
6.5 仿真研究
6.6 本章小结
结论(英文)
结论
参考文章
攻读博士学位期间发表的论文及其它研究成果
哈尔滨工业大学学位论文原创性声明使用授权说明
哈尔滨工业大学博士学位论文原创性声明
致谢
个人简历

抱歉,此资源仅限赞助会员下载,请先
注意:本站资源多为网络收集,如涉及版权问题请及时与站长联系QQ:2766242327,我们会在第一时间内与您协商解决。如非特殊说明,本站所有资源解压密码均为:agvba.com。
weinxin
微信公众号
agvba是一个分享AGV知识和agv案例视频的网站。